Basit öğe kaydını göster

dc.contributor.authorBulut H.
dc.contributor.authorÖner Y.
dc.date.accessioned2020-06-21T09:04:38Z
dc.date.available2020-06-21T09:04:38Z
dc.date.issued2017
dc.identifier.issn0266-4763
dc.identifier.urihttps://doi.org/10.1080/02664763.2016.1267115
dc.identifier.urihttps://hdl.handle.net/20.500.12712/2050
dc.description.abstractIn this study, classical and robust principal component analyses are used to evaluate socioeconomic development of regions of development agencies that give service on the purpose of decreasing development difference among regions in Turkey. Due to the high differences between development levels of regions outlier problem occurs, hence robust statistical methods are used. Also, classical and robust statistical methods are used to investigate if there are any outliers in data set. In classic principal component analyse, the number of observations must be larger than the number of variables. Otherwise determinant of covariance matrix is zero. In Robust method for Principal Component Analysis (ROBPCA), a robust approach to principal component analyse in high-dimensional data, even if the number of variables is larger than the number of observations, principal components are obtained. In this paper, firstly 26 development agencies are evaluated with 19 variables by using principal component analysis based on classical and robust scatter matrices and then these 26 development agencies are evaluated with 46 variables by using the ROBPCA method. © 2016 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.language.isoengen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.isversionof10.1080/02664763.2016.1267115en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdevelopment agencyen_US
dc.subjectROBPCAen_US
dc.subjectrobust Mahalanobis distanceen_US
dc.subjectRobust principal component analysisen_US
dc.subjectsocioeconomic development indexen_US
dc.titleThe evaluation of socio-economic development of development agency regions in Turkey using classical and robust principal component analysesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume44en_US
dc.identifier.issue16en_US
dc.identifier.startpage2936en_US
dc.identifier.endpage2948en_US
dc.relation.journalJournal of Applied Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster