Basit öğe kaydını göster

dc.contributor.authorGurkanli, A. Turan
dc.date.accessioned2020-06-21T15:29:36Z
dc.date.available2020-06-21T15:29:36Z
dc.date.issued2006
dc.identifier.issn0023-608X
dc.identifier.urihttps://hdl.handle.net/20.500.12712/20800
dc.descriptionWOS: 000243956400006en_US
dc.description.abstractIn the second section of this paper, in analogy to modulation spaces, we define the space M(p, q) (R-d) to be the subspace of tempered distributions f is an element of S' (R-d) such that the Gabor transform V-g (f) of f is in the Lorentz space L (p, q) (R-2d), where the window function g is a rapidly decreasing function. We endow this space with a suitable norm and show that the M(p, q) (R-d) becomes a Barlach space and is invariant under time-frequency shifts for 1 <= p, q <= infinity. We also discuss the dual space of M(p, q) (R-d) and the multipliers from L-1 (R-d) into M(p, q) (R-d). In the third section we intend to study the intersection space S (p, q) (R-d) = L-1 (R-d) boolean AND M (p, q) (R-d) for 1 < P < infinity, 1 <= q <= infinity. We endow it with the sum norm and show that S (p, q) (R-d) becomes a Banach convolution algebra. Further we prove that it is also a Segal algebra. In the last section we discuss the multipliers of S(p,q) (R-d) and M (p, q) (R-d).en_US
dc.language.isoengen_US
dc.publisherKinokuniya Co Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleTime frequency analysis and multipliers of the spaces M(p, q) (R-d) and S(p, q) (R-d)en_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume46en_US
dc.identifier.issue3en_US
dc.identifier.startpage595en_US
dc.identifier.endpage616en_US
dc.relation.journalJournal of Mathematics of Kyoto Universityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster