Basit öğe kaydını göster

dc.contributor.authorOztekin, E
dc.date.accessioned2020-06-21T15:38:06Z
dc.date.available2020-06-21T15:38:06Z
dc.date.issued2004
dc.identifier.issn0020-7608
dc.identifier.urihttps://doi.org/10.1002/qua.20203
dc.identifier.urihttps://hdl.handle.net/20.500.12712/21343
dc.descriptionWOS: 000224074800021en_US
dc.description.abstractA unified analytical treatment of overlap integrals over Slater-type orbitals, using the Fourier transform method, is presented. Our approach leads to considerable simplification of the derivation of analytical representations for the overlap integrals over Slater type orbitals. In this approach, the representations of overlap integrals with both the same and different screening parameters have been obtained with the help of the Rayleigh expansion of a plane wave in terms of spherical Bessel functions and spherical harmonics. Analytical expressions obtained by this method have been expressed in terms of Gaunt coefficients, which are the product of spherical harmonics, Gegenbauer, and binomial coefficients. These overlap integrals have also been calculated with respect to the differences in n(1) - l(1) and n(2) - l(2) numbers that are even or odd. (C) 2004 Wiley Periodicals, Inc.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley & Sons Incen_US
dc.relation.isversionof10.1002/qua.20203en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectoverlap integralsen_US
dc.subjectGegenbauer polynomialsen_US
dc.subjectSlater-type orbitalsen_US
dc.titleOverlap integrals with respect to quantum numbers over Slater-type orbitals via the Fourier-transform methoden_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume100en_US
dc.identifier.issue2en_US
dc.identifier.startpage236en_US
dc.identifier.endpage243en_US
dc.relation.journalInternational Journal of Quantum Chemistryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster