Basit öğe kaydını göster

dc.contributor.authorGurkanli, AT
dc.date.accessioned2020-06-21T15:38:29Z
dc.date.available2020-06-21T15:38:29Z
dc.date.issued2004
dc.identifier.issn0023-608X
dc.identifier.urihttps://hdl.handle.net/20.500.12712/21399
dc.descriptionWOS: 000225002200008en_US
dc.description.abstractLet (X, Sigma, mu) be a measure space. It is well known that l(p)(X) subset of or equal to l(q) (X) whenever 0 < p less than or equal to q less than or equal to infinity. Subramanian [12] characterized all positive measures it on (X, E) for which L-p(mu) subset of or equal to L-q (mu) whenever 0 < p less than or equal to q less than or equal to infinity and Romero [10] completed and improved some results of Subramanian [12]. Miamee [6] considered the more general inclusion L-p(mu) subset of or equal to L-q (nu) where mu and nu are two measures on (X, Sigma). Let L(p(1), q(1))(X, mu) and L(p(2), q(2))(X, nu) be two Lorentz spaces,where 0 < p(1), p(2) < infinity and 0 < q(1), q(2) less than or equal to infinity. In this work we generalized these results to the Lorentz spaces and investigated that under what conditions L(p(1), q(1)) (X, mu) subset of or equal to L(p(2), q(2)) (X, nu) for two different measures mu and nu on (X, Sigma).en_US
dc.language.isoengen_US
dc.publisherDuke Univ Pressen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleOn the inclusion of some Lorentz spacesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume44en_US
dc.identifier.issue2en_US
dc.identifier.startpage441en_US
dc.identifier.endpage450en_US
dc.relation.journalJournal of Mathematics of Kyoto Universityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster