dc.contributor.author | Oztop, S | |
dc.contributor.author | Gurkanli, AT | |
dc.date.accessioned | 2020-06-21T15:49:26Z | |
dc.date.available | 2020-06-21T15:49:26Z | |
dc.date.issued | 2001 | |
dc.identifier.issn | 0252-9602 | |
dc.identifier.issn | 1572-9087 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/22230 | |
dc.description | WOS: 000172992600006 | en_US |
dc.description.abstract | Let G be a locally compact unimodular group with Haar measure rmdx and Le be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space A(omega)(p,q) (G) and prove that A(omega)(p,q) (G) is a translation invariant Banach space. Furthermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then A(omega)(p,q) (G) admits an approximate identity bounded in L-1 omega (G). It is also proved that the space L-omega(p) (G) x (L1 omega) L-omega(q) (G) is isometrically isomorphic to the space A(omega)(p,q) (G) and the space of multipliers from L-omega(p) (G) to L-omega -1(q') (G) is isometrically isoinorphic to the dual of the space A(omega)(p,q) (G) iff G satisfies a property P-p(q). At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from L-omega(1) (G) to A(omega)(p,q) (G) is the space A(omega)(p,q) (G). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Banach module | en_US |
dc.subject | weighted L-p(G) spaces | en_US |
dc.subject | multiplier | en_US |
dc.title | Multipliers and tensor products of weighted L-p-spaces | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 21 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 41 | en_US |
dc.identifier.endpage | 49 | en_US |
dc.relation.journal | Acta Mathematica Scientia | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |