Basit öğe kaydını göster

dc.contributor.authorOztop, S
dc.contributor.authorGurkanli, AT
dc.date.accessioned2020-06-21T15:49:26Z
dc.date.available2020-06-21T15:49:26Z
dc.date.issued2001
dc.identifier.issn0252-9602
dc.identifier.issn1572-9087
dc.identifier.urihttps://hdl.handle.net/20.500.12712/22230
dc.descriptionWOS: 000172992600006en_US
dc.description.abstractLet G be a locally compact unimodular group with Haar measure rmdx and Le be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space A(omega)(p,q) (G) and prove that A(omega)(p,q) (G) is a translation invariant Banach space. Furthermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then A(omega)(p,q) (G) admits an approximate identity bounded in L-1 omega (G). It is also proved that the space L-omega(p) (G) x (L1 omega) L-omega(q) (G) is isometrically isomorphic to the space A(omega)(p,q) (G) and the space of multipliers from L-omega(p) (G) to L-omega -1(q') (G) is isometrically isoinorphic to the dual of the space A(omega)(p,q) (G) iff G satisfies a property P-p(q). At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from L-omega(1) (G) to A(omega)(p,q) (G) is the space A(omega)(p,q) (G).en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBanach moduleen_US
dc.subjectweighted L-p(G) spacesen_US
dc.subjectmultiplieren_US
dc.titleMultipliers and tensor products of weighted L-p-spacesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume21en_US
dc.identifier.issue1en_US
dc.identifier.startpage41en_US
dc.identifier.endpage49en_US
dc.relation.journalActa Mathematica Scientiaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster