• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Traffic Sign Detection via Color and Shape-Based Approach

Tarih

2019

Yazar

Yildiz G.
Dizdaroglu B.

Üst veri

Tüm öğe kaydını göster

Özet

Traffic sign detection is one of the basic operations for intelligent transport systems and driver assistance systems. In this study, a new method for traffic sign detection based on image processing was proposed. The performance of the proposed method has been increased by taking into account both color information and geometric shapes of traffic signs in the feature extraction phase. The RGB color space was used in the study. First, noise reduction and morphological processes were made the image formally tractable. After that by dint of the shape-based approach, triangular, circular and square shapes were taken into consideration, shapes were identified by means of connected components and figures without traffic signs were removed from the image. Thus, the remaining objects formed the traffic signs in the image. As a result of the experimental study applied to the data set, it was seen that the traffic signs in the image were detected. © 2019 IEEE.

Kaynak

1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings

Bağlantı

https://doi.org/10.1109/UBMYK48245.2019.8965590
https://hdl.handle.net/20.500.12712/2302

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.