Basit öğe kaydını göster

dc.contributor.authorÖzto S.
dc.contributor.authorGürkanli A.T.
dc.date.accessioned2020-06-21T09:15:20Z
dc.date.available2020-06-21T09:15:20Z
dc.date.issued2001
dc.identifier.issn0252-9602
dc.identifier.urihttps://hdl.handle.net/20.500.12712/2696
dc.description.abstractLet G be a locally compact unimodular group with Haar measure rmdx and ? be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Ap,q? (G) and prove that Ap,q? (G) is a translation invariant Banach space. Furthermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Ap,q? (G) admits an approximate identity bounded in L1?. (G). It is also proved that the space Lp? (G) ?L1? L?q? (G) is isometrically isomorphic to the space Ap,q? (G) and the space of multipliers from Lp? (G) to Lq??-1 (G) is isometrically isomorphic to the dual of the space Ap,q? (G) iff G satisfies a property Pqp. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from L1? (G) to Ap,q? (G) is the space Ap,q? (G).en_US
dc.language.isoengen_US
dc.publisherSpringer Netherlandsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBanach moduleen_US
dc.subjectMultiplieren_US
dc.subjectWeighted Lp(G) spacesen_US
dc.titleMultipliers and tensor products of weighted Lp-spacesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume21en_US
dc.identifier.issue1en_US
dc.identifier.startpage41en_US
dc.identifier.endpage49en_US
dc.relation.journalActa Mathematica Scientiaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster