Basit öğe kaydını göster

dc.contributor.authorSağir B.
dc.date.accessioned2020-06-21T09:15:31Z
dc.date.available2020-06-21T09:15:31Z
dc.date.issued2000
dc.identifier.issn0420-1213
dc.identifier.urihttps://hdl.handle.net/20.500.12712/2739
dc.description.abstractLet G be a locally compact abelian group, let G be the dual group G. Research on Wiener type spaces was initiated by N. Wiener in [11]. A number of authors worked on these spaces or some special cases of these spaces. A kind of generalization of the Wiener's definition was given by H. Feichtinger in [5], [7] its a Banach spaces of functions on locally compact groups that are defined by means of the global behavior of certain local properties of their elements. In this paper, the space Aw B,Y(G) consisting of all complex-valued functions f ? L1 w,(G) whose Fourier transforms f belong to the Wiener type spaces W(B,Y) is investigated, where w is Beurling weights on G (c.f. [9]). In the first section invariance properties and asymptotic estimates for the translation and modulation operators are given. Furthermore the closed ideals are discussed and it is showed that the space Aw(G) LwP(G),Y is an abstract Segal algebra with respect to Lw 1(G). At the end of this work, it is proved that if G is a locally compact abelian group then the space of all multipliers from L1 w(G) to Aw B,Y(G) is the space Aw B,Y(G). © 2000 Warsaw University. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleOn functions with Fourier transforms in W(B,Y)en_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume33en_US
dc.identifier.issue2en_US
dc.identifier.startpage355en_US
dc.identifier.endpage363en_US
dc.relation.journalDemonstratio Mathematicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster