• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bioabsorbable membrane prevents adhesions to polypropylene mesh in rats

Date

2000

Author

Malazgirt Z.
Ulusoy A.N.
Gok Y.
Karagoz F.
Tac K.

Metadata

Show full item record

Abstract

Most of mesh materials used in the repair of ventral hernias lead to considerable adhesion formation. In this study we evaluated the effects of a bioabsorbable membrane composed of carboxymethylcellulose and hyaluronic acid (HA membrane) on adhesion formation in the presence of a polypropylene mesh used to repair an incisional hernia model in rats. We repaired the defects either primarily or by polypropylene mesh. The abdominal surface of the repairs were then covered by a piece of HA membrane in randomly selected groups. The presence and grade of adhesions to the repair or mesh were recorded on the 8th day. Tissue specimens were analyzed for the extent of mesothelial and collagenous tissue growth and the degree of inflammation. Dense adhesions developed on all of the defects repaired by polypropylene mesh alone. The HA membrane decreased adhesions significantly when used as a supplement over the mesh (p < 0.01). Histopathologically, the HA membrane further retarded mesothelial growth over the mesh, and decreased vascular proliferation, inflammatory cell infiltration (p < 0.01) and collagen content of the wound (p < 0.05). In our rat model, the HA membrane prevented most of the adhesions that would be expected to occur on the mesh. It decreased the local infiltration of white cells and neovascularization. The HA membrane seemed to be a suitable physical barrier in rats against adhesion formation without compromising the wound healing. However, these findings need to be confirmed in humans.

Source

Hernia

Volume

4

Issue

3

URI

https://doi.org/10.1007/BF01207587
https://hdl.handle.net/20.500.12712/2769

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.