Basit öğe kaydını göster

dc.contributor.advisorTapramaz, Recep
dc.contributor.authorÇilengiroğlu, Didem
dc.date.accessioned2023-04-17T05:02:54Z
dc.date.available2023-04-17T05:02:54Z
dc.date.issued2021en_US
dc.date.submitted2021
dc.identifier.citationÇilengiroğlu, D. (2021). Arttıran, eksilten ve toplam spin işlemcilerine karşılık gelen dönme işlemci matrislerinin oluşturulması. (Yüksek lisans tezi). Ondokuz Mayıs Üniversitesi, Samsun.en_US
dc.identifier.urihttp://libra.omu.edu.tr/tezler/136617.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.12712/33970
dc.descriptionTam Metin / Tezen_US
dc.description.abstractKuantum mekaniksel dönme işlemcileri, puls manyetik rezonans spektroskopilerinde önemli bir rol oynar ve kuantum mekaniği ve matematiğinin de konusudur. Spin 1/2'ye karşılık gelen dönme operatörleri yaygın olarak bilinir ve kimi kuantum mekaniği ders kitaplarında bulunabilir. Spin tabanlı kuantum hesaplamada öncelikle iki durumlu spin-1/2 sistemlerle oluşan kubitleri esas alırken diğer yandan da spin-1 sistemin oluşturduğu qutrit ve daha büyük spin sistemlerinin oluşturduğu durumlar üzerinde de çalışmalar yapılmaktadır. Buna dayanarak bu tezde önce kuantum hesaplama hakkında temel bilgiler verilecek, peşinden spin tabanlı kuantum hesaplamalarda kullanılan özellikle Pauli spin matrislerinin önemi ve fonksiyonları gözden geçirilecektir. Spin-1/2’nin Pauli spin matrislerinin kuantum hesaplamasındaki kullanımları göz önüne alınarak daha önce türetilen diğer spin işlemci matrislerinin dönme işlemcileri yanında bu spin işlemcilerinin Ŝ +,Ŝ −ve Ŝ2 işlemcilerine karşılık gelen dönme matris işlemcilerinin elemanları türetilecektir. Zamana bağlı Schrödinger denklemi üstel işlemci (exponantial operatör) kavramını ortaya çıkarmıştır. Üstel işlemci kapalı haliyle işlem yapamadığından temel bir yöntem olarak üstel ifade kuvvet serisine açılarak fonksiyonel hale getirilir. Bu seri açılımları 1/2 ile 5/2 spinlerin merdiven işlemcileri Ŝ +,Ŝ −ve Ŝ2 işlemcileri için belirli bir açı aralığında toplanarak elde edilen sayısal değişim uygun fonksiyonlara en küçük kareler yöntemiyle uydurularak ilgili spinin dönme işlemcilerinin elemanları elde edilmiştiren_US
dc.description.abstractQuantum mechanical rotation operators play important role in pulsed magnetic resonance spectroscopies and are the subject of quantum mechanics and mathematics. The rotation operators corresponding to spin-1/2 are well known and can be found in some quantum mechanics textbooks. While spin-based quantum computation uses primarily qubit systems created by spin-1/2 systems, qutrit systems created by spin-1 systems and higher spin systems are also studied. In this thesis, keeping above works in mind, quantum computing principles will be summarized and then importance and operations of Pauli spin operators used in spin-based quantum computing will be overviewed. Importance of Pauli spin operators of spin-1/2 in quantum computing led us to drive rotation operators of spins Ŝ +, Ŝ −ve Ŝ2 . Exponential operator concept is defined by time dependent Schrödinger equation. It is an operator of closed form and are not applicable to corresponding systems in this form. One way of application of exponential operators is converting it to linear form by power series expansion. In this thesis, rotation operators of spins 1/2 to 5/2 are determined by series expansion of exponential operators, calculating the series for consecutive angles and fitting the found values to functions representing the variations of corresponding rotation operator elements.en_US
dc.language.isoturen_US
dc.publisherOndokuz Mayıs Üniversitesi Lisansüstü Eğitim Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectkuantum hesaplamaen_US
dc.subjectspinen_US
dc.subjectspin işlemcisien_US
dc.subjectartıran spin işlemcisien_US
dc.subjecteksilten spin işlemcisien_US
dc.subjectüstel işlemcien_US
dc.subjectdönme işlemcisien_US
dc.subjectquantum computingen_US
dc.subjectspinen_US
dc.subjectspin operatoren_US
dc.subjectincreasing spin operatoren_US
dc.subjectdecreasing spin operatoren_US
dc.subjectexponential operatoren_US
dc.subjectrotating operatoren_US
dc.titleArttıran, eksilten ve toplam spin işlemcilerine karşılık gelen dönme işlemci matrislerinin oluşturulmasıen_US
dc.title.alternativeFormation of rotation operator matrices corresponding to increasing, decreasing and total spin operatorsen_US
dc.typemasterThesisen_US
dc.contributor.departmentOMÜ, Lisansüstü Eğitim Enstitüsü, Fizik Ana Bilim Dalıen_US
dc.contributor.authorID0000-0002-8497-0404en_US
dc.contributor.authorID0000-0002-7051-1717en_US
dc.relation.publicationcategoryTezen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster