Show simple item record

dc.contributor.authorAkyildiz F.T.
dc.contributor.authorVajravelu K.
dc.date.accessioned2020-06-21T09:23:11Z
dc.date.available2020-06-21T09:23:11Z
dc.date.issued2006
dc.identifier.issn1687-4099
dc.identifier.urihttps://doi.org/10.1155/DENM/2006/71717
dc.identifier.urihttps://hdl.handle.net/20.500.12712/3431
dc.description.abstractSolutions for a class of nonlinear second-order differential equations arising in steady Poiseuille flow of an Oldroyd six-constant model are obtained using the quasilinearization technique. Existence, uniqueness, and analyticity results are established using Schauder theory. Numerical results are presented graphically and salient features of the solutions are discussed.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1155/DENM/2006/71717en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleExistence, uniqueness, and quasilinearization results for nonlinear differential equations arising in viscoelastic fluid flowen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume2006en_US
dc.relation.journalDifferential Equations and Nonlinear Mechanicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record