Basit öğe kaydını göster

dc.contributor.authorAydin I.
dc.contributor.authorSağir B.
dc.date.accessioned2020-06-21T09:24:36Z
dc.date.available2020-06-21T09:24:36Z
dc.date.issued2008
dc.identifier.issn0420-1213
dc.identifier.urihttps://hdl.handle.net/20.500.12712/3839
dc.description.abstractLet G be a metrizable locally compact Abelian group with dual group ?. For 1 ? p < ?, Ap(G) denotes the vector space of all complex-valued functions in L1(G) whose Fourier transforms f belong to Lp (?). Research on the spaces Ap(G) was initiated by Warner in [14] and Larsen, Liu and Wang in [7], Martin and Yap in [8]. Let Lip(?,p) and lip(?,p) denote the Lipschitz spaces defined on G. In the present paper, the space Alip p(G) consisting of all complex-valued functions f ? lip(?, 1) whose Fourier transforms fbelong to Lp(?) is investigated. In the first section invariant properties and asymptotic estimates for the translation and modulation operators axe given. Furthermore it is showed that space Alip p(G) is homogeneous Banach space. At the end of this work, it is proved that the space of all multipliers from L1 (G) to Alip p(G) is the space Alip p(G). © 2008 Warsaw University.en_US
dc.language.isoengen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFourier transformsen_US
dc.subjectLipschitz spacesen_US
dc.subjectMultipliersen_US
dc.titleOn functions with Fourier transforms in Alip p(G)en_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume41en_US
dc.identifier.issue2en_US
dc.identifier.startpage425en_US
dc.identifier.endpage432en_US
dc.relation.journalDemonstratio Mathematicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster