dc.contributor.author | Türkmen E. | |
dc.contributor.author | Pancar A. | |
dc.date.accessioned | 2020-06-21T09:27:51Z | |
dc.date.available | 2020-06-21T09:27:51Z | |
dc.date.issued | 2009 | |
dc.identifier.issn | 1311-8080 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/4180 | |
dc.description.abstract | Let R be a ring and M be a left R-module. In this work some properties of (amply) cofinitely Rad-supplemented modules are developed. It is shown that if M contains a nonzero semi-hollow submodule then M is cofinitely Rad-supplemented if and only if M/N is cofinitely Rad-supplemented. Morever a module M with small radical is cofinitely Rad-supplemented such that Rad-supplements are supplements in M, then M is cofinitely supplemented. In addition, a ring R is left Rad-supplemented if and only if every left R-module is amply cofinitely Rad-supplemented. Also, we give a characterization of generalized semiperfect modules. © 2009 Academic Publications. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Amply) cofinitely radsupplemented module | en_US |
dc.subject | Cofinite submodule | en_US |
dc.subject | Generalized projective cover | en_US |
dc.subject | Rad-supplement, ( | en_US |
dc.title | On cofinitely Rad-supplemented modules | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 53 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 153 | en_US |
dc.identifier.endpage | 162 | en_US |
dc.relation.journal | International Journal of Pure and Applied Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |