dc.contributor.author | Aydin I. | |
dc.contributor.author | Gürkanli A.T. | |
dc.date.accessioned | 2020-06-21T09:27:58Z | |
dc.date.available | 2020-06-21T09:27:58Z | |
dc.date.issued | 2009 | |
dc.identifier.issn | 1598-7264 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/4211 | |
dc.description.abstract | For 1 ? p < ?, Ap (Rn) denotes the space of all complex-valued functions in L1 (Rn) whose Fourier transforms f? belong to Lp(Rn). A number of authors such as Larsen, Liu and Wang [12], Martin and Yap [14], Lai [11] worked on this space. Some generalizations to the weighted case was given by Gurkanli [7], Feichtinger and Gurkanli [4], Fischer, Gurkanli and Liu [5]. In the present paper we give another generalization of Ap (Rn) to the generalized Lebesgue space Lp(x)(Rn). We define A p(x)w (Rn) to be the space of all complex-valued functions in L1w (Rn) whose Fourier transforms f? belong to the generalized Lebesgue space L p(x)(Rn). We endow it with a sum norm and show that A p(x)w (Rn) is an Sw(Rn) space [2]. Further we discuss the multipliers of Ap(x)w (Rn). | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | On some properties of the spaces Awp(x)(R n) | en_US |
dc.type | conferenceObject | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 12 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 141 | en_US |
dc.identifier.endpage | 155 | en_US |
dc.relation.journal | Proceedings of the Jangjeon Mathematical Society | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |