Basit öğe kaydını göster

dc.contributor.authorKaracan E.
dc.contributor.authorKiliç E.
dc.date.accessioned2020-06-21T09:29:01Z
dc.date.available2020-06-21T09:29:01Z
dc.date.issued2012
dc.identifier.isbn9.78147E+12
dc.identifier.urihttps://doi.org/10.1109/SIU.2012.6204531
dc.identifier.urihttps://hdl.handle.net/20.500.12712/4415
dc.description2012 20th Signal Processing and Communications Applications Conference, SIU 2012 -- 18 April 2012 through 20 April 2012 -- Fethiye, Mugla -- 90786en_US
dc.description.abstractIn this study, a novel methodology based on Support Vector Machine (SVM) is proposed. In the proposed method, the sigma value belonging to the radial based function which is being used as the kernel function for the support vector machine is computed by using an adaptive mechanism. By this means, a new kind of SVM which can be defined as "Adaptive SVM" (ASVM) is proposed, and smart diagnosis of the breast cancer is aimed. During the training and test phases of this newly designed smart system, the prognostic breast cancer dataset which is provided from University of California is used. It is observed that the novel methodology which is firstly proposed in this study has a correct classification rate of 94.29% on the prognostic breast cancer dataset. © 2012 IEEE.en_US
dc.language.isoturen_US
dc.relation.isversionof10.1109/SIU.2012.6204531en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleDiagnosis of breast cancer with an innovative adaptive Support Vector Machineen_US
dc.title.alternativeYeni?li?kçi? bi?r uyarlanabi?li?r DVM i?le göğüs kanseri?ni?n teşhi?s edi?lmesi?en_US
dc.typeconferenceObjecten_US
dc.contributor.departmentOMÜen_US
dc.relation.journal2012 20th Signal Processing and Communications Applications Conference, SIU 2012, Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster