dc.contributor.author | Sari?glugil A. | |
dc.contributor.author | Tutar A. | |
dc.contributor.author | Stachel H. | |
dc.date.accessioned | 2020-06-21T09:37:54Z | |
dc.date.available | 2020-06-21T09:37:54Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1433-8157 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/4835 | |
dc.description.abstract | In the present paper, the relaxed elastic lines of second kind on an oriented surface in the Euclidean n-space are defined and the Euler-Lagrange equations are derived. Furthermore, an example is presented. Special emphasis is laid on the particular case when these curves are at the same time geodesic. © 2014 Heldermann Verlag. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Heldermann Verlag | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Euler-Lagrange equation | en_US |
dc.subject | Geodesic | en_US |
dc.subject | Intrinsic equation | en_US |
dc.subject | Relaxed elastic line | en_US |
dc.title | On relaxed elastic lines of second kind on a curved hypersurface in the n-dimensional euclidean space | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 18 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 81 | en_US |
dc.identifier.endpage | 95 | en_US |
dc.relation.journal | Journal for Geometry and Graphics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |