Show simple item record

dc.contributor.authorOdabas M.S.
dc.contributor.authorErgun E.
dc.contributor.authorOner F.
dc.date.accessioned2020-06-21T09:38:12Z
dc.date.available2020-06-21T09:38:12Z
dc.date.issued2013
dc.identifier.issn1310-0351
dc.identifier.urihttps://hdl.handle.net/20.500.12712/4887
dc.description.abstractThis research investigates the artificial neural networks utilization in improving leaf area forecasting at corn leaves (Zea mays L.). Best fitting results were obtained with 2 input nodes (leaf length and leaf width), 2 hidden layers and one output (leaf area). Artificial neural network model performance was tested successfully to describe the relationship between actual leaf area and predicted leaf area. R2 of leaf area was 0.98. Artificial neural networks model produced satisfied correlation between measured and predicted value and minimum inspection error.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectCornen_US
dc.subjectLeaf areaen_US
dc.subjectModelingen_US
dc.subjectZea mays Len_US
dc.titleArtificial neural network approach for the predicition of the corn (Zea mays L.) leaf areaen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume19en_US
dc.identifier.issue4en_US
dc.identifier.startpage766en_US
dc.identifier.endpage769en_US
dc.relation.journalBulgarian Journal of Agricultural Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record