dc.contributor.author | Aydin Y. | |
dc.date.accessioned | 2020-06-21T09:42:37Z | |
dc.date.available | 2020-06-21T09:42:37Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1311-8080 | |
dc.identifier.uri | https://doi.org/10.12732/ijpam.v108i2.16 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/5141 | |
dc.description.abstract | In this paper Problem 17.13 by A.O. Asar in The Kourovka Notebook is studied which is 'Let G be a totally imprimitive p - group of finitary permutations on an infinite set. Suppose that the support of any cycle in the cyclic decomposition of every element of G is a block for G. Does G necessarily contain a minimal non - FC - subgroup?' and an example of a group G satisfying these conditions but not having a minimal non - FC - subgroup is given. © 2016 Academic Publications, Ltd. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press | en_US |
dc.relation.isversionof | 10.12732/ijpam.v108i2.16 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Finitary symmetric group | en_US |
dc.subject | Minimal non-FC-group | en_US |
dc.title | On a problem of minimal non-FC-groups | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 108 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 421 | en_US |
dc.identifier.endpage | 423 | en_US |
dc.relation.journal | International Journal of Pure and Applied Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |