Basit öğe kaydını göster

dc.contributor.authorDuyar, Cenap
dc.contributor.authorSeferoğlu, Heybet
dc.date.accessioned2020-06-21T10:44:00Z
dc.date.available2020-06-21T10:44:00Z
dc.date.issued1999
dc.identifier.issn1300-4263
dc.identifier.urihttps://app.trdizin.gov.tr/publication/paper/detail/TXpRMk9UVTE=
dc.identifier.urihttps://hdl.handle.net/20.500.12712/9676
dc.description.abstractIn this study we prove the inequality \frac{\alpha}{2}\leq d(T, M)\leq\alpha a for the distance d(T, M) of an operator T \in B (L1 (G)) from the space M of multipliers. Here \sigma sup_{t\in G} \parallel TL_{t} - L_{t} T \parallel and G is a compact Abelian group. Moreover, we prove the same inequality for each operator T \in B (L2 (G)) where G is a locally compact Abelian group.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematiken_US
dc.titleEvaluation of the distance to the space of multipliers in integrable function spacesen_US
dc.typeotheren_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume28en_US
dc.identifier.startpage1en_US
dc.identifier.endpage8en_US
dc.relation.journalHacettepe Bulletin of Natural Sciences and Engineering Series B / Mathematics and Statisticsen_US
dc.relation.publicationcategoryDiğeren_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster