dc.contributor.author | Duyar, Cenap | |
dc.contributor.author | Seferoğlu, Heybet | |
dc.date.accessioned | 2020-06-21T10:44:00Z | |
dc.date.available | 2020-06-21T10:44:00Z | |
dc.date.issued | 1999 | |
dc.identifier.issn | 1300-4263 | |
dc.identifier.uri | https://app.trdizin.gov.tr/publication/paper/detail/TXpRMk9UVTE= | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/9676 | |
dc.description.abstract | In this study we prove the inequality \frac{\alpha}{2}\leq d(T, M)\leq\alpha a for the distance d(T, M) of an operator T \in B (L1 (G)) from the space M of multipliers. Here \sigma sup_{t\in G} \parallel TL_{t} - L_{t} T \parallel and G is a compact Abelian group. Moreover, we prove the same inequality for each operator T \in B (L2 (G)) where G is a locally compact Abelian group. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Matematik | en_US |
dc.title | Evaluation of the distance to the space of multipliers in integrable function spaces | en_US |
dc.type | other | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 28 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 8 | en_US |
dc.relation.journal | Hacettepe Bulletin of Natural Sciences and Engineering Series B / Mathematics and Statistics | en_US |
dc.relation.publicationcategory | Diğer | en_US |