Show simple item record

dc.contributor.authorKulak, Öznur
dc.contributor.authorGürkanlı, A.Turan
dc.date.accessioned2020-06-21T10:44:32Z
dc.date.available2020-06-21T10:44:32Z
dc.date.issued2011
dc.identifier.issn1303-5010
dc.identifier.issn2651-477X
dc.identifier.urihttps://app.trdizin.gov.tr/publication/paper/detail/TVRJeE5URXpNdz09
dc.identifier.urihttps://hdl.handle.net/20.500.12712/9801
dc.description.abstractLet \omega_1 and \omega_2 be weight functions on \Bbb{R}d, (\Bbb{R}d X \Bbb{R}_), respectively. Throughout this paper, we define D{p,q}_{\omega_1,\omega_2} (\Bbb{R}d) to be the vector space of f \in Lp_{\omega_1} (\Bbb{R}d) such that the wavelet transform W_gf belongs to Lq_{\omega_2} (\Bbb{R}d X \Bbb{R}_) for 1 \leq p, q < \infty, where 0 \neq g \in S (\Bbb{R}d) . We endow this space with a sum norm and show that D{p,q}_{\omega_1,\omega_2} (\Bbb{R}d) becomes a Banach space. We discuss inclusion properties, and compact embeddings between these spaces and the dual of D{p,q}_{\omega_1,\omega_2} (\Bbb{R}d). Later we accept that the variable s in the space D{p,q}_{\omega_1,\omega_2} (\Bbb{R}d) is fixed. We denote this space by (D{p,q}_{\omega_1,\omega_2})_s (\Bbb{R}d) , and show that under suitable conditions (D{p,q}_{\omega_1,\omega_2})_s (\Bbb{R}d) is an essential Banach Module over L1_{\omega_1} (\Bbb{R}d) . We obtain its approximate identities. At the end of this work we discuss the multipliers from (D{p,q}_{\omega_1,\omega_2})_s (\Bbb{R}d) into L{\infty}_{(\omega_1){-1}} (\Bbb{R}d), and from L1_{\omega_1} (\Bbb{R}d) into (D{p,q}_{\omega_1,\omega_2})_s (\Bbb{R}d)en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematiken_US
dc.subjectİstatistik ve Olasılıken_US
dc.titleOn function spaces with wavelet transform in $L_{\omega}^p(\Bbb{R}^d X \Bbb{R}_+)$en_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume40en_US
dc.identifier.issue2en_US
dc.identifier.startpage163en_US
dc.identifier.endpage177en_US
dc.relation.journalHacettepe Journal of Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record