• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel Approach to the Treatment of Diabetes: Embryonic Stem Cell and Insulin-Loaded Liposomes and Nanocochleates

Date

2019

Author

Yucel, Cigdem
Aktas, Yesim
Degim, Zelihagul
Yilmaz, Sukran
Arsoy, Taibe
Altintas, Levent
Sozmen, Mahmut

Metadata

Show full item record

Abstract

This study aims to investigate and compare the effects of insulin and embryonic stem-cell (ESC) loaded liposomes (LPs) and nanocochleate formulations and their PEGylated forms on the glucose levels. All formulations were characterized considering particle size, zeta potential, polydispersity index and encapsulation efficiencies. In-vitro insulin that releases from the formulations was determined using Franz-type diffusion cells. A cytotoxicity test revealed that none of the formulations was toxic to cells in any concentrations. The effects of the formulations on diabetic cells induced with glucose and streptozotocin (STZ) were then investigated in cell culture studies. Although glucose levels were decreased by the formulations after incubation, the liposomal formulations were found to be better. In experiments that were conducted on mice, it was observed again that blood glucose levels decreased successfully when diabetic pancreatic beta TC cells were incubated with the formulations, and all formulations were found to be effective in decreasing blood glucose levels in diabetic mice. Although ESC-loaded LPs were found to be the most effective formulation, LPs and nanocochleate formulations may also be used for the repair of pancreatic cells. This proposed ESC treatment is considered to be an attractive approach and a potential source for cell replacement therapy in the treatment of diabetes.

Source

Journal of Nanoscience and Nanotechnology

Volume

19

Issue

7

URI

https://doi.org/10.1166/jnn.2019.16321
https://hdl.handle.net/20.500.12712/10778

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.