• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diagnosis of Diabetes Mellitus Using Statistical Methods and Machine Learning Algorithms

Date

2018

Author

Pekel, Ebru
Ozcan, Tuncay

Metadata

Show full item record

Abstract

The early diagnosis of the diabetes condition is crucial for cure process, because an early diagnosis provides the ease of treatment for the patient and the physician. At this point, statistical methods and data mining algorithms can provide important opportunities for early diagnosis of diabetes mellitus. In the literature, many studies have been published for solution of this problem. In this study, firstly, these studies are analyzed in detail and classified according to their methodologies and solution approaches. The main aim of this paper is to provide the comprehensive and detailed review of the diagnosis of diabetes by statistical methods and machine learning algorithms. Also, this paper presents a literature review on the diagnosis diabetes up to the end of 2017. It's identified over 425 papers, highly cited 100 ones are presented in detailed. This paper provides to guide future research and knowledge accumulation and creation of classification and prediction techniques in diagnosis of diabetes. This study shows it is clear that the combination of different machine learning algorithms and optimization models can lead to more meaningful and powerful results.

Source

Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisi

Volume

36

Issue

4

URI

https://hdl.handle.net/20.500.12712/11259

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.