• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Primary Principles in Developing Scale with Rasch Analysis: Portfolio Anxiety Assessment

Date

2018

Author

Tomak, L.
Midik, O.

Metadata

Show full item record

Abstract

Background: Rasch model is a useful method for developing a new scale. This study aims to determine the fitting between data obtained from answers for a portfolio anxiety scale and Rasch model and describes how the scale can be modified to increase the fitting through different steps. Materials and Methods: A portfolio scale was applied to 171 students of the Faculty of Medicine, Ondokuz Mayis University. The partial credit model was used, and fit statistics were assessed to determine the fitting of the data to Rasch model. Person separation index (PSI) was used for reliability. Results: For a satisfaction subscale, the average item fit residual value was 0.47 and the average person fit residual value was -0.29. For the item-trait chi(2) interaction, P = 0.655 and PSI = 0.81. For a writing anxiety subscale, the average item fit residual value was 0.08 and the average person fit residual value was -0.24. For the item-trait chi(2) interaction, P = 0.698 and PSI = 0.73. For a reflection anxiety subscale, the average item fit residual value was 0.64 and the average item fit residual value was 0.64. For the item-trait chi(2) interaction, P = 0.195 and PSI = 0.73. Conclusion: The validity and reliability of Rasch analysis portfolio scale were analyzed, and items that worked well were included in the study. The results show that Rasch model provides a more accurate analysis for developing and adapting scales. Both the fit statistics and fit graphs help improve the analyses.

Source

Nigerian Journal of Clinical Practice

Volume

21

Issue

10

URI

https://doi.org/10.4103/njcp.njcp_275_17
https://hdl.handle.net/20.500.12712/11419

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.