• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Primary Principles in Developing Scale with Rasch Analysis: Portfolio Anxiety Assessment

Tarih

2018

Yazar

Tomak, L.
Midik, O.

Üst veri

Tüm öğe kaydını göster

Özet

Background: Rasch model is a useful method for developing a new scale. This study aims to determine the fitting between data obtained from answers for a portfolio anxiety scale and Rasch model and describes how the scale can be modified to increase the fitting through different steps. Materials and Methods: A portfolio scale was applied to 171 students of the Faculty of Medicine, Ondokuz Mayis University. The partial credit model was used, and fit statistics were assessed to determine the fitting of the data to Rasch model. Person separation index (PSI) was used for reliability. Results: For a satisfaction subscale, the average item fit residual value was 0.47 and the average person fit residual value was -0.29. For the item-trait chi(2) interaction, P = 0.655 and PSI = 0.81. For a writing anxiety subscale, the average item fit residual value was 0.08 and the average person fit residual value was -0.24. For the item-trait chi(2) interaction, P = 0.698 and PSI = 0.73. For a reflection anxiety subscale, the average item fit residual value was 0.64 and the average item fit residual value was 0.64. For the item-trait chi(2) interaction, P = 0.195 and PSI = 0.73. Conclusion: The validity and reliability of Rasch analysis portfolio scale were analyzed, and items that worked well were included in the study. The results show that Rasch model provides a more accurate analysis for developing and adapting scales. Both the fit statistics and fit graphs help improve the analyses.

Kaynak

Nigerian Journal of Clinical Practice

Cilt

21

Sayı

10

Bağlantı

https://doi.org/10.4103/njcp.njcp_275_17
https://hdl.handle.net/20.500.12712/11419

Koleksiyonlar

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.