• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel throughput mapping method for DC-HSDPA systems based on ANN

Date

2017

Author

Kurnaz, Cetin
Engiz, Begum Korunur
Esenalp, Murat

Metadata

Show full item record

Abstract

In order to improve support for higher data rates, third-generation partnership project (3GPP) introduced dual-carrier high-speed downlink packet access (DC-HSDPA), which reaches up to 42-Mbps throughput with the use of two adjacent 5-MHz carriers in Release-8. Defining the dependence of throughput on prevailing channel parameters is crucial because a frequency-selective channel limits achieving these data rates. For this reason, DC-HSDPA throughput real field measurements were taken in different propagation environments by using the "TEMS Investigation" program. The evaluation of the measurements showed that one-parameter linear mapping methods, such as signal-to-interference ratio and channel quality indicator, are insufficient for characterizing user throughput. Therefore, this study will propose a novel mapping method with more than one variable. Although multiple linear regression gives a better normalized root-mean-square error, results have shown that frequently used artificial neural network-based mapping methods-such as those for adaptive network-based fuzzy inference system, multilayer perceptron, and generalized regression neural network (GRNN)-yield improved accuracy. From among these, user throughput can be best estimated with the use of GRNN for a commercial DC-HSDPA system, with approximately 93.3 % precision. The GRNN structure allows system designers to update system parameters to maximize user throughput.

Source

Neural Computing & Applications

Volume

28

Issue

2

URI

https://doi.org/10.1007/s00521-015-2054-1
https://hdl.handle.net/20.500.12712/12618

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.