• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Empirical Equations and Artificial Neural Network Results in Terms of Kinematic Viscosity Prediction of Fuels Based on Hazelnut Oil Methyl Ester

Date

2016

Author

Eryilmaz, Tanzer
Arslan, Mevlut
Yesilyurt, Murat Kadir
Taner, Alper

Metadata

Show full item record

Abstract

This study investigates the prediction of kinematic viscosity values of hazelnut oil methyl ester (HOME) using empirical equations and artificial neural network (ANN) methods under varying temperature and blend ratio conditions with ultimate euro diesel (UED) fuel. Four different fuel blends (20, 40, 60, and 80% by volume mixing ratio) were studied along with UED fuel and pure biodiesel. Tests for kinematic viscosity were performed in the temperature range of 293.15-373.15 K at the intervals of 1 K for each fuel sample. Moreover, physicochemical properties of hazelnut crude oil (HCO), HOME and its blends, and also fatty acid composition of HCO and HOME were measured and discussed in light of ASTM and EN standards. Regression analyses were conducted using MATLAB software to determine the coefficient of determination (R-2), root mean square error (RMSE), and correlation constants. The best R-2 and RMSE values were obtained by Eq. 6 as 0.9999 and 0.0068, respectively. In the analyses conducted using ANN, R-2, and RMSE were obtained as 0.999986 and 0.00149 respectively based on the overall HOME-UED fuel blends. Although R-2 values obtained by these two methods were close to each other, RMSE obtained using ANN was smaller than that of the one obtained by Eq. 6. In conclusion, the ANN method captures the best accuracy for the prediction of biodiesel kinematic viscosity with the highest R-2 of 0.999986 and the lowest RMSE of 0.00149, which is within +/- 1% error range of the experimental data. (C) 2016 American Institute of Chemical Engineers Environ Prog, 35: 1827-1841, 2016

Source

Environmental Progress & Sustainable Energy

Volume

35

Issue

6

URI

https://doi.org/10.1002/ep.12410
https://hdl.handle.net/20.500.12712/13010

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.