• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces

Date

2014

Author

Kulak, Oznur
Gurkanli, Ahmet Turan

Metadata

Show full item record

Abstract

Let omega(1), omega(2) be slowly increasing weight functions, and let omega(3) be any weight function on R-n. Assume that m(xi, eta) is a bounded, measurable function on R-n x R-n. We define B-m(f, g)(x) = integral(Rn) integral(Rn) (f) over cap(xi)(g) over cap(eta)m(xi, eta)e(2 pi i <xi+eta,x >) d xi d eta for all f, g is an element of C-c(infinity)(R-n). We say that m(xi, eta) is a bilinear multiplier on R-n of type (W(p(1), q(1), omega(1); p(2), q(2), omega(2); p(3), q(3), omega(3))) if B-m is a bounded operator from W(L-p1, L-omega 1(q1)) x W(L-p2, L-omega 2(q2)) to W(L-p3, L-omega 3(q3)), where 1 <= p(1) <= q(1) < infinity, 1 <= p(2) <= q(2) < infinity, 1 < p3, q(3) <= infinity. We denote by BM(W(p(1), q(1), omega(1); p(2), q(2), omega(2); p(3), q(3), omega(3))) the vector space of bilinear multipliers of type (W(p(1), q(1), omega(1); p(2), q(2), omega(2); p(3), q(3), omega(3))). In the first section of this work, we investigate some properties of this space and we give some examples of these bilinear multipliers. In the second section, by using variable exponent Wiener amalgam spaces, we define the bilinear multipliers of type (W(p(1)(x), q(1), omega(1); p(2)(x), q(2), omega(2); p(3)(x), q(3), omega(3))) from W(L-p1(x), L-omega 1(q1)) x W(L-p2(x), L-omega 2(q2)) to W(L-p3(x), L-omega 3(q3)), where p*(1), p*(2), p*(3) < infinity, p(1)(x) <= q(1), p(2)(x) <= q(2), 1 <= q(3) <= infinity for all p(1)(x), p(2)(x), p(3)(x) is an element of P(R-n). We denote by BM(W(p(1)(x), q(1), omega(1); p(2)(x), q(2), omega(2); p(3)(x), q(3), omega(3))) the vector space of bilinear multipliers of type (W(p(1)(x), q(1), omega(1); p(2)(x), q(2), omega(2); p(3)(x), q(3), omega(3))). Similarly, we discuss some properties of this space.

Source

Journal of Inequalities and Applications

URI

https://doi.org/10.1186/1029-242X-2014-476
https://hdl.handle.net/20.500.12712/14865

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.