• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Breast Cancer Nomogram for Prediction of Non-Sentinel Node Metastasis - Validation of Fourteen Existing Models

Date

2014

Author

Koca, Bulent
Kuru, Bekir
Ozen, Necati
Yoruker, Savas
Bek, Yuksel

Metadata

Show full item record

Abstract

Background: To avoid performing axillary lymph node dissection (ALND) for non-sentinel lymph node (SLN)-negative patients with-SLN positive axilla, nomograms for predicting the status have been developed in many centers. We created a new nomogram predicting non-SLN metastasis in SLN-positive patients with invasive breast cancer and evaluated 14 existing breast cancer models in our patient group. Materials and Methods: Two hundred and thirty seven invasive breast cancer patients with SLN metastases who underwent ALND were included in the study. Based on independent predictive factors for non-SLN metastasis identified by logistic regression analysis, we developed a new nomogram. Receiver operating characteristics (ROC) curves for the models were created and the areas under the curves (AUC) were computed. Results: In a multivariate analysis, tumor size, presence of lymphovascular invasion, extranodal extension of SLN, large size of metastatic SLN, the number of negative SLNs, and multifocality were found to be independent predictive factors for non-SLN metastasis. The AUC was found to be 0.87, and calibration was good for the present Ondokuz Mayis nomogram. Among the 14 validated models, the MSKCC, Stanford, Turkish, MD Anderson, MOU (Masaryk), Ljubljana, and DEU models yielded excellent AUC values of >0.80. Conclusions: We present a new model to predict the likelihood of non-SLN metastasis. Each clinic should determine and use the most suitable nomogram or should create their own nomograms for the prediction of non-SLN metastasis.

Source

Asian Pacific Journal of Cancer Prevention

Volume

15

Issue

3

URI

https://doi.org/10.7314/APJCP.2014.15.3.1481
https://hdl.handle.net/20.500.12712/15465

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.