• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of Experimental Results by Artificial Neural Network Model for Adsorption of Cu2+ Using Single Wall Carbon Nanotubes

Tarih

2013

Yazar

Geyikci, Feza
Coruh, Semra
Kilic, Erdal

Üst veri

Tüm öğe kaydını göster

Özet

Removal of copper ions from aqueous solution using single wall carbon nanotubes (SWCNTs) as a function on pH was studied using batch technique. The results indicate that adsorption is strongly dependent on pH. The adsorption of Cu2+ on SWCNTs increases slowly with increasing pH value at pH<7.0 and then the adsorption increases rapidly with increasing pH at pH>7.0. The equilibrium adsorption data were analyzed by the Langmuir, Freundlich, and Temkin adsorption isotherm models. The Freundlich adsorption model agrees well with experimental data. The pseudo-second order kinetic was the best fit kinetic model for the experimental data. The experimental results were also constructed an artificial neural network (ANN) to predict removal of copper ions. A four-layer ANN, an input layer with four neurons, two hidden layers with 13 neurons, and an output layer with one neuron (4-8-5-1) is constructed. Different training algorithms are tested on the model proposed to obtain the best weights and bias values for ANN. Our results suggest that SWCNTs have a good potential application in environmental protection. This novel modeling tool is newly grown and has been used yet to model the above-mentioned experiments for SWCNTs.

Kaynak

Separation Science and Technology

Cilt

48

Sayı

10

Bağlantı

https://doi.org/10.1080/01496395.2012.738276
https://hdl.handle.net/20.500.12712/15875

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.