• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new time invariant fuzzy time series forecasting method based on particle swarm optimization

Date

2012

Author

Aladag, Cagdas Hakan
Yolcu, Ufuk
Egrioglu, Erol
Dalar, Ali Z.

Metadata

Show full item record

Abstract

In the analysis of time invariant fuzzy time series, fuzzy logic group relationships tables have been generally preferred for determination of fuzzy logic relationships. The reason of this is that it is not need to perform complex matrix operations when these tables are used. On the other hand, when fuzzy logic group relationships tables are exploited, membership values of fuzzy sets are ignored. Thus, in defiance of fuzzy set theory, fuzzy sets' elements with the highest membership value are only considered. This situation causes information loss and decrease in the explanation power of the model. To deal with these problems, a novel time invariant fuzzy time series forecasting approach is proposed in this study. In the proposed method, membership values in the fuzzy relationship matrix are computed by using particle swarm optimization technique. The method suggested in this study is the first method proposed in the literature in which particle swarm optimization algorithm is used to determine fuzzy relations. In addition, in order to increase forecasting accuracy and make the proposed approach more systematic, the fuzzy c-means clustering method is used for fuzzification of time series in the proposed method. The proposed method is applied to well-known time series to show the forecasting performance of the method. These time series are also analyzed by using some other forecasting methods available in the literature. Then, the results obtained from the proposed method are compared to those produced by the other methods. It is observed that the proposed method gives the most accurate forecasts. (C) 2012 Elsevier B.V. All rights reserved.

Source

Applied Soft Computing

Volume

12

Issue

10

URI

https://doi.org/10.1016/j.asoc.2012.05.002
https://hdl.handle.net/20.500.12712/16334

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.