• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Determining the most proper number of cluster in fuzzy clustering by using artificial neural networks

Date

2011

Author

Erilli, N. Alp
Yolcu, Ufuk
Egrioglu, Erol
Aladag, C. Hakan
Oner, Yuksel

Metadata

Show full item record

Abstract

In a clustering problem, it would be better to use fuzzy clustering if there was an uncertainty in determining clusters or memberships of some units. Determining the number of cluster has an important role on obtaining sensible and sound results in clustering analysis. In many clustering algorithm, it is firstly need to know number of cluster. However, there is no pre-information about the number of cluster in general. The process of determining the most proper number of cluster is called as cluster validation. In the available fuzzy clustering literature, the most proper number of cluster is determined by utilizing cluster validation indices. When the data contain complexity are being analyzed, cluster validation indices can produce conflictive results. Also, there is no criterion point out the best index. In this study, artificial neural networks are employed to determine the number of cluster. The data is taken as input so the output is membership degree. The proposed method is applied some data and obtained results are compared to those obtained from validation indices like PC, XB, and CE. It is shown that the proposed method produce accurate results. (C) 2010 Elsevier Ltd. All rights reserved.

Source

Expert Systems With Applications

Volume

38

Issue

3

URI

https://doi.org/10.1016/j.eswa.2010.08.012
https://hdl.handle.net/20.500.12712/17337

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]

Related items

Showing items related by title, author, creator and subject.

  • A robust EM clustering approach: ROBEM 

    Oner, Yuksel; Bulut, Hasan (Taylor & Francis Inc, 9999)
    Cluster analysis is defined as a group of multivariate statistical methods that are used to classify identical, or similar units. As is the case with all other classical statistical methods, classical clustering analysis ...
  • An Automated Clustering Algorithm Based on Agglomerative Clustering 

    Karabina, Armagan; Kilic, Erdal (Ieee, 2016)
    The most important one of main problems for K-based clustering algorithm is randomly selected k parameter when running the algorithm. In this study, an automated clustering algorithm based on agglomerative clustering and ...
  • Bayes ve bazı ikili kümeleme algoritmalarının zootekni verilerinde kullanımı 

    Bayyurt, Lütfi (Ondokuz Mayıs Üniversitesi, Lisansüstü Eğitim Enstitüsü, 2022)
    Bu çalışmada, iki farklı veri seti kullanılarak farklı ikili kümeleme algoritmalarının kümeleme performanslarının karşılaştırılması amaçlanmıştır. Çalışmada ilk olarak Sheepnet (Ağ oluşturma yoluyla Avrupa Birliği (AB) ve ...



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.