• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving weighted information criterion by using optimization

Date

2010

Author

Aladag, Cagdas Hakan
Egrioglu, Erol
Gunay, Suleyman
Basaran, Murat A.

Metadata

Show full item record

Abstract

Although artificial neural networks (ANN) have been widely used in forecasting time series, the determination of the best model is still a problem that has been studied a lot. Various approaches available in the literature have been proposed in order to select the best model for forecasting in ANN in recent years. One of these approaches is to use a model selection strategy based on the weighted information criterion (WIC). WIC is calculated by summing weighted different selection criteria which measure the forecasting accuracy of an ANN model in different ways. In the calculation of WIC, the weights of different selection criteria are determined heuristically. In this study, these weights are calculated by using optimization in order to obtain a more consistent criterion. Four real time series are analyzed in order to show the efficiency of the improved WIC. When the weights are determined based on the optimization, it is obviously seen that the improved WIC produces better results. (C) 2009 Elsevier B.V. All rights reserved.

Source

Journal of Computational and Applied Mathematics

Volume

233

Issue

10

URI

https://doi.org/10.1016/j.cam.2009.11.016
https://hdl.handle.net/20.500.12712/18013

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.