• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new method for homoclinic solutions of ordinary differential equations

Date

2009

Author

Akyildiz, F. Talay
Vajravelu, K.
Liao, S-J.

Metadata

Show full item record

Abstract

Consideration is given to the homoclinic solutions of ordinary differential equations. We first review the Melnikov analysis to obtain Melnikov function, when the perturbation parameter is zero and when the differential equation has a hyperbolic equilibrium. Since Melnikov analysis fails, using Homotopy Analysis Method (HAM, see [Liao SJ. Beyond perturbation: introduction to file homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003; Liao SJ. An explicit. totally analytic approximation of Blasius' viscous flow problems. Int J Non-Linear Mech 1999;34(4):759-78: Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004:147(2):499-513] and others [Abbasbandy S. The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 2006:360:109-13; Hayat T, Sajid M. On analytic solution for thin film flow of a Forth grade fluid down it vertical cylinder. Phys Lett A, in press; Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving bell. Nonlinear Dyn, in press]), we obtain homoclinic solution for a differential equation with zero perturbation parameter and with hyperbolic equilibrium. Then we show that the Melnikov type function call be obtained as it special case of this homotopy analysis method. Finally, homoclinic solutions arc obtained (for nontrivial examples) analytically by HAM, and arc presented through graphs. (C) 2009 Published by Elsevier Ltd.

Source

Chaos Solitons & Fractals

Volume

39

Issue

3

URI

https://doi.org/10.1016/j.chaos.2007.04.021
https://hdl.handle.net/20.500.12712/18778

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.