• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyses of turbidity and acoustic backscatter signal with artificial neural network for estimation of suspended sediment concentration

Date

2018

Author

Meral R.
Dogan Demir A.
Cemek B.

Metadata

Show full item record

Abstract

The commonly used sampling method is restrictive for the spatial and temporal measurement of suspended sediment and requires intensive labor. These limitations and technological advances have led to methods based on sound or light scattering in water. In this study, the turbidity and acoustic backscattering signal (ABS) values were used with the aim of improving these methods with different artificial neural network (ANN) models; Multilayer Perceptron (MLP), Radial Basis Neural networks (RBNN) and General Regression Neural Network (GRNN). Measurements were taken in a vertical sediment tower for two different sediment sizes (< 50 µm and 50–100 µm) and concentrations (0.0– 6.0 g L-1). In the results of the regression analyses, turbidity values had strong relationships with sediment concentration for both sediment size groups (R2 = 0.937 and 0.967). Although the ABS values had a reasonable R2 value (0.873) for the 50–100 µm group, the < 50 µm group did not produce a significant R2 value with regression analyses. The remarkable differences were not observed among MLP, RBNN and GRNN model for this sediment size group, and the reasonable R2 and RMSE results were not produced with any ANN model that had a single ABS input for the < 50 µm sediment group. On the other hand, for the other sediment group (50–100 µm), ABS values were used as a single input, and the highest R2 (0.917) value was obtained with MLP model and it was improved with the turbidity input (up to R2 = 0.999). The results show that the ANN model could be considered as an alternative method because it was applied successfully to estimate suspended sediment concentration using with turbidity and ABS under different particle size conditions. © 2018, ALÖKI Kft., Budapest, Hungary.

Source

Applied Ecology and Environmental Research

Volume

16

Issue

1

URI

https://doi.org/10.15666/aeer/1601_697708
https://hdl.handle.net/20.500.12712/2028

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.