• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating Number Theoretic Transform in GPU Platform for qTESLA Scheme

Date

2019

Author

Lee W.-K.
Akleylek S.
Yap W.-S.
Goi B.-M.

Metadata

Show full item record

Abstract

Post-quantum cryptography had attracted a lot of attentions in recent years, due to the potential threat emerged from quantum computer against traditional public key cryptography. Among all post-quantum candidates, lattice-based cryptography is considered the most promising and well studied one. The most time consuming operation in lattice-based cryptography schemes is polynomial multiplication. Through careful selection of the lattice parameters, the polynomial multiplication can be accelerated by Number Theoretic Transform (NTT) and massively parallel architecture like Graphics Processing Units (GPU). However, existing NTT implementation in GPU only focuses on parallelizing one of the three for loop, which eventually causes slow performance and warp divergence. In this paper, we proposed a strategy to mitigate this problem and avoid the warp divergence. To verify the effectiveness of the proposed strategy, the NTT was implemented following the lattice parameters in qTESLA, which is one of the round 2 candidates in NIST Post-Quantum Standardization competition. To the best of our knowledge, this is the first implementation of NTT in GPU with parameters from qTESLA. The proposed implementation can be used to accelerate qTESLA signature generation and verification in batch, which is very useful under server environment. On top of that, the proposed GPU implementation can also be generalized to other lattice-based schemes. © Springer Nature Switzerland AG, 2019.

Source

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Volume

11879 LNCS

URI

https://doi.org/10.1007/978-3-030-34339-2_3
https://hdl.handle.net/20.500.12712/2398

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.