• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Enstitüler
  • Lisansüstü Eğitim Enstitüsü
  • Bilgisayar Mühendisliği Ana Bilim Dalı
  • Yüksek Lisans Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Enstitüler
  • Lisansüstü Eğitim Enstitüsü
  • Bilgisayar Mühendisliği Ana Bilim Dalı
  • Yüksek Lisans Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bilişsel radyo ağlarında immün plazma algoritması ile kanal atama probleminin çözülmesi

Thumbnail

View/Open

Tam Metin / Tez (3.245Mb)

Date

2022

Author

Kısa, Murat

Metadata

Show full item record

Citation

Kısa, M. (2022). Bilişsel radyo ağlarında immün plazma algoritması ile kanal atama probleminin çözülmesi. (Yüksek lisans tezi). Ondokuz Mayıs Üniversitesi, Samsun.

Abstract

İlk kez 2019 yılında Çin'in Wuhan eyaletinde görülen yeni korona virüs (COVID-19) tüm dünyayı hızla etkilemiş ve hala devam eden bir pandemiye sebep olmuştur. Ortaya çıkan bu sağlık krizini çözmek için önerilen tedavi ve teşhis yöntemleri doğrudan tıp bilimleri ile alakalı olsa da, bilgisayar ve veri bilimlerinden de araştırmacıların ilgisini çekmiştir. Bu ilginin beklenen sonucu olarak, geçtiğimiz yıllarda konvalesan veya immün plazma adı verilen tedavi yönteminin temel işlem adımlarını referans noktası alan İmmün Plazma algoritması (Immune Plasma algorithm – IP algorithm veya IPA) önerilmiştir. Bu tez kapsamında, IP algoritması, bilişsel radyo ağlarında kanal atama probleminin özellikleri dikkate alınarak güncellenmiştir. Ayrıca, IP algoritmasına yardımcı olacak bir düzenleme metodu geliştirilerek, bilişsel radyo ağlarında kanal atama probleminin çözümü gerçekleştirilmiştir. IP algoritmasının performansının incelenmesi için aralarında Yapay Arı Koloni algoritması, Ateş Böceği algoritması, Parçacık Sürü Optimizasyon algoritması, Genetik algoritma ve Gri Kurt Optimizasyon algoritması olan bir dizi meta-sezgisel algoritma ile karşılaştırmalar yapılmıştır. Karşılaştırma sonuçları, test senaryolarının genelinde IP algoritmasının bahsedilen diğer algoritmalara kıyasla daha başarılı çözümler ürettiğini göstermiştir.
 
The new corona virus (COVID-19) that is seen first in the Wuhan city of China at the beginning of 2019 has effected the whole world quickly and caused a pandemic still ongoing. Even though the treatment and diagnostic techniques proposed for handling the mentioned health crisis are directly related with the medical sciences, they also gathered researchers' interests from computer and information sciences. As an expected result of this interest, Immune Plasma algorithm (IP algorithm or IPA) referencing the fundamental steps of a treatment method called convalescent or immune plasma has been proposed recently. In this thesis, IP algorithm was modified by considering the properties of the channel assigment problem in cognitive radio networks. Moreover, a fixing method that supports IP algorithm was introduced and channel assignment problem in cognitive radio networks was solved. In order to investigate the performance of the IP algorithm, comparative studies with a set of meta-heuristics including Artificial Bee Colony algorithm, Firefly algorithm, Particle Swarm Optimization algorithm, Genetic algorithm and Grey Wolf Optimizer algorithm were carried out. The results obtained from the comparative studies showed that IP algorithm is capable of finding more qualified solutions for the vast majority of the test scenarios when the mentioned algorithms are considered.
 

URI

http://libra.omu.edu.tr/tezler/144986.pdf
https://hdl.handle.net/20.500.12712/34031

Collections

  • Yüksek Lisans Tez Koleksiyonu [26]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.