• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The role of epigenetics in spermatogenesis

Date

2013

Author

Güneş S.
Kulaç T.

Metadata

Show full item record

Abstract

Male germ cells have a unique morphology and function to facilitate fertilization. Sperm deoxyribonucleic acid (DNA) is highly condensed to protect the paternal genome during transfer from male to oocyte. Sperm cells undergo extensive epigenetic modifications during differentiation to become a mature spermatozoon. Epigenetic modifications, including DNA methylation, histone modifications, and chromatin remodeling are substantial regulators of spermatogenesis. DNA hypermethylation is associated with gene silencing. Meanwhile, hypomethylation is associated with gene expression. In sperm cells, promoters of developmental genes are highly hypomethylated. Proper DNA methylation is essential for embryo development. Histone modifications are chemical modifications that change the DNA-binding capacity of histones and the accessibility of regulatory factors to the DNA, thereby altering gene expression. Phosphorylation, methylation, acetylation, and ubiquitination are primary modifications of lysine and serine residues on histone tails. In addition to somatic histones, testis-specific histone variants are expressed, including histone H2B in mature sperm. The replacement of histones with protamines is a crucial step in spermatogenesis. Histone hyperacetylation induces a loose chromatin structure and facilitates topoisomerase-induced DNA strand breaks. As a result, histones are replaced with transition proteins. Next, the transition proteins are replaced with protamines that induce compaction of sperm DNA. This review provides an overview of epigenetic changes during spermatogenesis. © 2013 by Turkish Association of Urology.

Source

Turk Uroloji Dergisi

Volume

39

Issue

3

URI

https://doi.org/10.5152/tud.2013.037
https://hdl.handle.net/20.500.12712/4939

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.