Basit öğe kaydını göster

dc.contributor.authorKurnaz, Cetin
dc.contributor.authorEngiz, Begum Korunur
dc.contributor.authorEsenalp, Murat
dc.date.accessioned2020-06-21T13:26:45Z
dc.date.available2020-06-21T13:26:45Z
dc.date.issued2017
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.urihttps://doi.org/10.1007/s00521-015-2054-1
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12618
dc.descriptionKurnaz, Cetin/0000-0003-3436-899Xen_US
dc.descriptionWOS: 000393051200004en_US
dc.description.abstractIn order to improve support for higher data rates, third-generation partnership project (3GPP) introduced dual-carrier high-speed downlink packet access (DC-HSDPA), which reaches up to 42-Mbps throughput with the use of two adjacent 5-MHz carriers in Release-8. Defining the dependence of throughput on prevailing channel parameters is crucial because a frequency-selective channel limits achieving these data rates. For this reason, DC-HSDPA throughput real field measurements were taken in different propagation environments by using the "TEMS Investigation" program. The evaluation of the measurements showed that one-parameter linear mapping methods, such as signal-to-interference ratio and channel quality indicator, are insufficient for characterizing user throughput. Therefore, this study will propose a novel mapping method with more than one variable. Although multiple linear regression gives a better normalized root-mean-square error, results have shown that frequently used artificial neural network-based mapping methods-such as those for adaptive network-based fuzzy inference system, multilayer perceptron, and generalized regression neural network (GRNN)-yield improved accuracy. From among these, user throughput can be best estimated with the use of GRNN for a commercial DC-HSDPA system, with approximately 93.3 % precision. The GRNN structure allows system designers to update system parameters to maximize user throughput.en_US
dc.language.isoengen_US
dc.publisherSpringer London Ltden_US
dc.relation.isversionof10.1007/s00521-015-2054-1en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDC-HSDPAen_US
dc.subjectUser throughputen_US
dc.subjectReal field measurementsen_US
dc.subjectMultiple linear regressionen_US
dc.subjectANFISen_US
dc.subjectMLPen_US
dc.subjectGRNNen_US
dc.titleA novel throughput mapping method for DC-HSDPA systems based on ANNen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume28en_US
dc.identifier.issue2en_US
dc.identifier.startpage265en_US
dc.identifier.endpage274en_US
dc.relation.journalNeural Computing & Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster