Show simple item record

dc.contributor.authorKulak, Oznur
dc.contributor.authorGurkanli, Ahmet Turan
dc.date.accessioned2020-06-21T13:52:23Z
dc.date.available2020-06-21T13:52:23Z
dc.date.issued2014
dc.identifier.issn1029-242X
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2014-476
dc.identifier.urihttps://hdl.handle.net/20.500.12712/14865
dc.descriptionWOS: 000347469100003en_US
dc.description.abstractLet omega(1), omega(2) be slowly increasing weight functions, and let omega(3) be any weight function on R-n. Assume that m(xi, eta) is a bounded, measurable function on R-n x R-n. We define B-m(f, g)(x) = integral(Rn) integral(Rn) (f) over cap(xi)(g) over cap(eta)m(xi, eta)e(2 pi i <xi+eta,x >) d xi d eta for all f, g is an element of C-c(infinity)(R-n). We say that m(xi, eta) is a bilinear multiplier on R-n of type (W(p(1), q(1), omega(1); p(2), q(2), omega(2); p(3), q(3), omega(3))) if B-m is a bounded operator from W(L-p1, L-omega 1(q1)) x W(L-p2, L-omega 2(q2)) to W(L-p3, L-omega 3(q3)), where 1 <= p(1) <= q(1) < infinity, 1 <= p(2) <= q(2) < infinity, 1 < p3, q(3) <= infinity. We denote by BM(W(p(1), q(1), omega(1); p(2), q(2), omega(2); p(3), q(3), omega(3))) the vector space of bilinear multipliers of type (W(p(1), q(1), omega(1); p(2), q(2), omega(2); p(3), q(3), omega(3))). In the first section of this work, we investigate some properties of this space and we give some examples of these bilinear multipliers. In the second section, by using variable exponent Wiener amalgam spaces, we define the bilinear multipliers of type (W(p(1)(x), q(1), omega(1); p(2)(x), q(2), omega(2); p(3)(x), q(3), omega(3))) from W(L-p1(x), L-omega 1(q1)) x W(L-p2(x), L-omega 2(q2)) to W(L-p3(x), L-omega 3(q3)), where p*(1), p*(2), p*(3) < infinity, p(1)(x) <= q(1), p(2)(x) <= q(2), 1 <= q(3) <= infinity for all p(1)(x), p(2)(x), p(3)(x) is an element of P(R-n). We denote by BM(W(p(1)(x), q(1), omega(1); p(2)(x), q(2), omega(2); p(3)(x), q(3), omega(3))) the vector space of bilinear multipliers of type (W(p(1)(x), q(1), omega(1); p(2)(x), q(2), omega(2); p(3)(x), q(3), omega(3))). Similarly, we discuss some properties of this space.en_US
dc.description.sponsorshipOndokuz Mayis UniversityOndokuz Mayis University [PYO.FEN.1904.13.002]en_US
dc.description.sponsorshipThis work was supported by the Ondokuz Mayis University, Project number PYO.FEN.1904.13.002.en_US
dc.language.isoengen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.isversionof10.1186/1029-242X-2014-476en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectbilinear multipliersen_US
dc.subjectweighted Wiener amalgam spaceen_US
dc.subjectvariable exponent Wiener amalgam spaceen_US
dc.titleBilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spacesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record