Basit öğe kaydını göster

dc.contributor.authorKoca, Bulent
dc.contributor.authorKuru, Bekir
dc.contributor.authorOzen, Necati
dc.contributor.authorYoruker, Savas
dc.contributor.authorBek, Yuksel
dc.date.accessioned2020-06-21T13:59:08Z
dc.date.available2020-06-21T13:59:08Z
dc.date.issued2014
dc.identifier.issn1513-7368
dc.identifier.urihttps://doi.org/10.7314/APJCP.2014.15.3.1481
dc.identifier.urihttps://hdl.handle.net/20.500.12712/15465
dc.descriptionKuru, Bekir/0000-0001-7774-6431en_US
dc.descriptionWOS: 000333669500068en_US
dc.descriptionPubMed: 24606487en_US
dc.description.abstractBackground: To avoid performing axillary lymph node dissection (ALND) for non-sentinel lymph node (SLN)-negative patients with-SLN positive axilla, nomograms for predicting the status have been developed in many centers. We created a new nomogram predicting non-SLN metastasis in SLN-positive patients with invasive breast cancer and evaluated 14 existing breast cancer models in our patient group. Materials and Methods: Two hundred and thirty seven invasive breast cancer patients with SLN metastases who underwent ALND were included in the study. Based on independent predictive factors for non-SLN metastasis identified by logistic regression analysis, we developed a new nomogram. Receiver operating characteristics (ROC) curves for the models were created and the areas under the curves (AUC) were computed. Results: In a multivariate analysis, tumor size, presence of lymphovascular invasion, extranodal extension of SLN, large size of metastatic SLN, the number of negative SLNs, and multifocality were found to be independent predictive factors for non-SLN metastasis. The AUC was found to be 0.87, and calibration was good for the present Ondokuz Mayis nomogram. Among the 14 validated models, the MSKCC, Stanford, Turkish, MD Anderson, MOU (Masaryk), Ljubljana, and DEU models yielded excellent AUC values of >0.80. Conclusions: We present a new model to predict the likelihood of non-SLN metastasis. Each clinic should determine and use the most suitable nomogram or should create their own nomograms for the prediction of non-SLN metastasis.en_US
dc.language.isoengen_US
dc.publisherAsian Pacific Organization Cancer Preventionen_US
dc.relation.isversionof10.7314/APJCP.2014.15.3.1481en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBreast cancer nomogramen_US
dc.subjectnon-sentinel node metastasisen_US
dc.subjectnomogram for non-SLN metastasisen_US
dc.titleA Breast Cancer Nomogram for Prediction of Non-Sentinel Node Metastasis - Validation of Fourteen Existing Modelsen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume15en_US
dc.identifier.issue3en_US
dc.identifier.startpage1481en_US
dc.identifier.endpage1488en_US
dc.relation.journalAsian Pacific Journal of Cancer Preventionen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster