Basit öğe kaydını göster

dc.contributor.authorGeyikci, Feza
dc.contributor.authorCoruh, Semra
dc.contributor.authorKilic, Erdal
dc.date.accessioned2020-06-21T14:05:46Z
dc.date.available2020-06-21T14:05:46Z
dc.date.issued2013
dc.identifier.issn0149-6395
dc.identifier.issn1520-5754
dc.identifier.urihttps://doi.org/10.1080/01496395.2012.738276
dc.identifier.urihttps://hdl.handle.net/20.500.12712/15875
dc.descriptionWOS: 000319040500008en_US
dc.description.abstractRemoval of copper ions from aqueous solution using single wall carbon nanotubes (SWCNTs) as a function on pH was studied using batch technique. The results indicate that adsorption is strongly dependent on pH. The adsorption of Cu2+ on SWCNTs increases slowly with increasing pH value at pH<7.0 and then the adsorption increases rapidly with increasing pH at pH>7.0. The equilibrium adsorption data were analyzed by the Langmuir, Freundlich, and Temkin adsorption isotherm models. The Freundlich adsorption model agrees well with experimental data. The pseudo-second order kinetic was the best fit kinetic model for the experimental data. The experimental results were also constructed an artificial neural network (ANN) to predict removal of copper ions. A four-layer ANN, an input layer with four neurons, two hidden layers with 13 neurons, and an output layer with one neuron (4-8-5-1) is constructed. Different training algorithms are tested on the model proposed to obtain the best weights and bias values for ANN. Our results suggest that SWCNTs have a good potential application in environmental protection. This novel modeling tool is newly grown and has been used yet to model the above-mentioned experiments for SWCNTs.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.isversionof10.1080/01496395.2012.738276en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadsorptionen_US
dc.subjectartificial neural networken_US
dc.subjectcarbon nanotubesen_US
dc.subjectcopperen_US
dc.subjectisothermen_US
dc.subjectkineticen_US
dc.titleDevelopment of Experimental Results by Artificial Neural Network Model for Adsorption of Cu2+ Using Single Wall Carbon Nanotubesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume48en_US
dc.identifier.issue10en_US
dc.identifier.startpage1490en_US
dc.identifier.endpage1499en_US
dc.relation.journalSeparation Science and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster