• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Changes in the contents of main secondary metabolites in two Turkish Hypericum species during plant development

Date

2013

Author

Cirak, Cuneyt
Radusiene, Jolita
Camas, Necdet
Caliskan, Omer
Odabas, Mehmet Serhat

Metadata

Show full item record

Abstract

Context: The genus Hypericum (Guttiferae) has received considerable scientific interest as a source of biologically active compounds. Objective: The study determined the morphogenetic and ontogenetic variation in the main bioactive compounds of two Hypericum species, namely, Hypericum aviculariifolium subsp. depilatum var. depilatum (Freyn and Bornm.) Robson var. depilatum and Hypericum orientale L. through HPLC analyses of whole plants as well as individual plant parts (stems, leaves, and reproductive tissues). Materials and methods: The plant materials were harvested at five phenological stages: vegetative, floral budding, full flowering, fresh fruiting, and mature fruiting; dried at room temperature, then assayed for chemical content. Results: In H. aviculariifolium, no kaempferol accumulation was observed and the highest level of hypericin, pseudohypericin, and quercitrin was reached at full flowering (0.71, 1.78, and 4.15 mg/g DW, respectively). Plants, harvested at floral budding produced the highest amount of rutin, hyperoside, and isoquercitrine (32.96, 2.42, 1.52 mg/g DW, respectively). H. orientale did not produce hypericin, pseudohypericin, or kaempferol. Rutin, hyperoside, and isoquercetine levels were the highest at floral development (1.76, 11.85, and 1.21 mg/g DW, respectively) and plants harvested at fresh fruiting produced the highest amount of quercitrine and quercetine (0.20 and 1.30 mg/g DW, respectively). Discussion: For the first time, the chemical composition of the Turkish species of Hypericum was monitored during the course of ontogenesis to determine the ontogenetic and morphogenetic changes in chemical content. Conclusions: Plant material should be harvested during flower ontogenesis for medicinal purposes in which the content of many bioactive substances tested reached their highest level.

Source

Pharmaceutical Biology

Volume

51

Issue

3

URI

https://doi.org/10.3109/13880209.2012.733012
https://hdl.handle.net/20.500.12712/15978

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.