Show simple item record

dc.contributor.authorAkyildiz, F. Talay
dc.contributor.authorVajravelu, K.
dc.contributor.authorLiao, S-J.
dc.date.accessioned2020-06-21T15:07:10Z
dc.date.available2020-06-21T15:07:10Z
dc.date.issued2009
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2007.04.021
dc.identifier.urihttps://hdl.handle.net/20.500.12712/18778
dc.descriptionLiao, Shijun/0000-0002-2372-9502; LIAO, Shijun/0000-0002-2372-9502; Liao, Shijun/0000-0002-2372-9502en_US
dc.descriptionWOS: 000265471400011en_US
dc.description.abstractConsideration is given to the homoclinic solutions of ordinary differential equations. We first review the Melnikov analysis to obtain Melnikov function, when the perturbation parameter is zero and when the differential equation has a hyperbolic equilibrium. Since Melnikov analysis fails, using Homotopy Analysis Method (HAM, see [Liao SJ. Beyond perturbation: introduction to file homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press; 2003; Liao SJ. An explicit. totally analytic approximation of Blasius' viscous flow problems. Int J Non-Linear Mech 1999;34(4):759-78: Liao SJ. On the homotopy analysis method for nonlinear problems. Appl Math Comput 2004:147(2):499-513] and others [Abbasbandy S. The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys Lett A 2006:360:109-13; Hayat T, Sajid M. On analytic solution for thin film flow of a Forth grade fluid down it vertical cylinder. Phys Lett A, in press; Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving bell. Nonlinear Dyn, in press]), we obtain homoclinic solution for a differential equation with zero perturbation parameter and with hyperbolic equilibrium. Then we show that the Melnikov type function call be obtained as it special case of this homotopy analysis method. Finally, homoclinic solutions arc obtained (for nontrivial examples) analytically by HAM, and arc presented through graphs. (C) 2009 Published by Elsevier Ltd.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.isversionof10.1016/j.chaos.2007.04.021en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA new method for homoclinic solutions of ordinary differential equationsen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume39en_US
dc.identifier.issue3en_US
dc.identifier.startpage1073en_US
dc.identifier.endpage1082en_US
dc.relation.journalChaos Solitons & Fractalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record