A New Architecture Selection Strategy in Solving Seasonal Autoregressive Time Series By Artificial Neural Networks
Özet
The only suggestions given in the literature for determining the architecture of neural networks are based on observations, and a simulation study to determine the architecture has not yet been reported. Based on the results of the simulation study described in this paper, a new architecture selection strategy is proposed and shown to work well. It is noted that although in some studies the period of a seasonal time series has been taken as the number of inputs of the neural network model, it is found in this study that the period of a seasonal time series is not a parameter in determining the number of inputs.