Basit öğe kaydını göster

dc.contributor.authorAladag, Cagdas Hakan
dc.contributor.authorEgrioglu, Erol
dc.contributor.authorGunay, Suleyman
dc.date.accessioned2020-06-21T15:18:01Z
dc.date.available2020-06-21T15:18:01Z
dc.date.issued2008
dc.identifier.issn1303-5010
dc.identifier.urihttps://hdl.handle.net/20.500.12712/19546
dc.descriptionAladag, Cagdas Hakan/0000-0002-3953-7601; Egrioglu, Erol/0000-0003-4301-4149en_US
dc.descriptionWOS: 000263150600012en_US
dc.description.abstractThe only suggestions given in the literature for determining the architecture of neural networks are based on observations, and a simulation study to determine the architecture has not yet been reported. Based on the results of the simulation study described in this paper, a new architecture selection strategy is proposed and shown to work well. It is noted that although in some studies the period of a seasonal time series has been taken as the number of inputs of the neural network model, it is found in this study that the period of a seasonal time series is not a parameter in determining the number of inputs.en_US
dc.language.isoengen_US
dc.publisherHacettepe Univ, Fac Scien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArchitecture selectionen_US
dc.subjectSeasonal autoregressive time seriesen_US
dc.subjectNeural networksen_US
dc.subjectForecastingen_US
dc.subjectSimulationen_US
dc.titleA New Architecture Selection Strategy in Solving Seasonal Autoregressive Time Series By Artificial Neural Networksen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume37en_US
dc.identifier.issue2en_US
dc.identifier.startpage185en_US
dc.identifier.endpage200en_US
dc.relation.journalHacettepe Journal of Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster